Image Fusion with Conditional Probability Networks for Monitoring the Salinization of Farmland
نویسندگان
چکیده
We show how a series of satellite images used in conjunction with data derived from a digital terrain model can be used to monitor salinity in farmland. Using these data, a conditional probability network (CPN) is constructed to produce salinity maps. The maps are the result of combining uncertain information in images with uncertain knowledge or rules, where the rules are of a temporal and spatial nature. A specific model for extending conditional probability networks to handle the case of spatial context is given. To implement this model requires minor modifications to existing code for handling non-spatial CPN’s.
منابع مشابه
Use of conditional probability networks for environmental monitoring
Causal or conditional probability networks (CPNs) are shown to provide a natural framework for combining a time sequence of classified satellite images with other maps for environmental monitoring. The key features of CPNs are described by way of application to an example involving the monitoring of salinisation of farmland over time using satellite images and an ancillary data set derived from...
متن کاملMulti-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...
متن کاملAdaptive Decision Fusion in Detection Networks
In a detection network, the final decision is made by fusing the decisions from local detectors. The objective of that decision is to minimize the final error probability. To implement and optimal fusion rule, the performance of each detector, i.e. its probability of false alarm and its probability of missed detection as well as the a priori probabilities of the hypotheses, must be known. How...
متن کاملMonitoring Soil Salinization in Keriya River Basin, Northwestern China Using Passive Reflective and Active Microwave Remote Sensing Data
Soil salinization is one of the most widespread soil degradation processes on Earth, especially in arid and semi-arid areas. The salinized soil in arid to semi-arid Xinjiang Uyghur Autonomous Region in China accounts for 31% of the area of cultivated land, and thus it is pivotal for the sustainable agricultural development of the area to identify reliable and cost-effective methodologies to mon...
متن کاملAdaptive Decision Fusion in Detection Networks
In a detection
 network, the final decision is made by fusing the decisions from local detectors. The objective of that decision is to minimize the final error probability. To implement and optimal fusion rule, the performance of each detector, i.e. its probability of false alarm and its probability of missed detection as well as the a priori probabilities of the hypotheses, must be known. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Digital Signal Processing
دوره 8 شماره
صفحات -
تاریخ انتشار 1998